
articlopedia.gigcities.com

for more please visit :
http://articlopedia.gigcities.com

file:///D|/important.html9/13/2006 8:50:19 PM

http://articlopedia.gigcities.com/
http://articlopedia.gigcities.com

Introduction to Software
Testing & Quality

Assurance

15 Key Questions that will be Answered by Taking this Course

1. How does testing fit into the overall software development life cycle?

2. What is the role of a test group?

3. What is the role of the QA organization?

4. Should we try to test everything?

5. How do we manage the risks that threaten our project’s success?

6. How can I test when the tests aren’t written down and I can’t get the

product documentation that I need?

7. What techniques can I use to develop test cases?

8. How should I do system-level testing?

9. What kind of test documentation should I produce?

10. How can I report bugs in a way that will be useful to the people who

need to know about them?

11. How can I determine the quality of the software without running it?

12. What kinds of metrics are useful?

13. How can approach process improvement in a systematic way?

14. How can I take advantage of test automation tools?

15. Where can I learn more?

 2

Comprehensive Course Outline

This course provides a highly practical bottom-up introduction to software testing and quality
assurance. Every organization delegates testing and high-level quality assurance activities in a
different way. This course provides a broad view of both quality assurance and testing so that
participants will have a broad awareness of many of the activities that contribute to managing the
quality of a software product.

1. The Software Life Cycle
An introduction to the fundamental elements of the software life cycle, and several life cycle
models that are commonly in use. Also, how testing is integrated into the life cycle.

a. Life cycle models
b. Types of testing and where they fit in

i. Unit Testing
ii. Regression Testing
iii. Integration Testing
iv. System Testing

2. The Role of Testing and QA
An overview of the typical responsibilities of test groups and quality assurance groups, along with
common variations. The difference between testing and quality assurance, and the ways that these
terms are often abused. The anatomy of a bug.

§ Exercise: Write the objectives for your test team. Compare notes.

a. Typical Test Group Objectives
b. Typical Quality Assurance Objectives
c. Variations
d. What is a bug?

3. You Can’t Test Everything
Why you cannot completely test any non-trivial application. A demonstration of the magnitude of
the testing challenge due to the number of possible inputs, combinations of features and
configurations, and paths through the code.

§ Exercise: Define a small part of an application that is familiar to the class and calculate
the number of tests required to cover all feature combinations.

a. Inputs
b. Combinations

i. Feature Interactions
ii. Configurations

c. Code Paths

4. Risk Management
An introduction to the risk management process – identifying risks, analyzing them, mitigating
them, contingency planning, and monitoring. How to use a risk-based approach to prioritize

 3

testing tasks and plan the appropriate level of resources to apply to testing, given that you can’t
test everything.

§ Exercise: Participate in a facilitated risk brainstorming session.
§ Exercise: Split into two groups. For two different sample projects with the same software

but different risks, plan the testing effort. Compare the results.

a. Risk Management Process
i. Identify
ii. Analyze
iii. Plan
iv. Mitigate
v. Track

b. Risk-Based Testing
i. Using a Risk Analysis to Plan Testing
ii. Quality Criteria
iii. Risk Catalogs
iv. Risk-Based Release Decisions
v. When to Use Alternate Methods to Mitigate Risk

5. Exploratory Testing
An introduction to the concept of “Testing in the Dark.” You find an unlabeled CD on your desk
with a note that says “Please test.” How to use exploratory testing to find bugs even in the most
adverse conditions. How to make exploratory testing a disciplined process, distinct from a chaotic
ad-hoc testing process. Also, how to take advantage of exploratory testing even in the most
organized development processes.

§ Exercise: Test a virtual software system you’ve never seen before using exploratory testing

techniques.

a. Testing in the Dark
b. Anatomy of Exploratory Testing
c. Differences Between Exploratory and Ad-Hoc Testing
d. Knowing When Exploratory Testing is the Best Approach
f. Reporting
e. Supplementing a Documented Test Suite With Exploratory Testing

6. Test Design Techniques
A tour of several low-level test design techniques. What situations would lead testers in an
independent test group to use these techniques.

§ Exercise: Discuss the appropriate combination of techniques to use for a few different

testing projects.
§ Exercise: Use the all-pairs technique to reduce the number of tests required to cover

feature interactions for a particular program.

a. Functional Analysis
b. Requirements Analysis
c. Partitioning
d. Domain Analysis

 4

e. User Scenarios
f. All-pairs
g. Using Combinations of These Techniques

7. System Testing
The high-level approaches that testers need to apply when conducting system testing, plus some
examples of how they might be applied.

a. Load Testing
b. Performance Testing
c. Stress & Hot Spot Testing
d. Spike & Bounce Testing
e. Reliability Testing
f. Configuration Testing
g. Acceptance Testing
h. Sample System Test Strategies

8. Test Documentation
How to develop an arsenal of repeatable tests so you don’t have to redo the test design process
every time you re-test the software. How to carefully calibrate the level of detail in the test
documentation so that there is a good return on the investment for the time it takes and the later
maintenance that will be required.

a. Rude Awakening – IEEE 829
b. What Will Your Test Documents Be Used For?
c. The Quality Plan
d. Test Project Planning
e. Test Case Documentation

i. Manual Tests
ii. Automated Tests

9. Bug Isolation and Reporting
When testers are successful, they will come across bug symptoms. This section explains the fine
art of bug isolation – turning a symptom into a well-defined bug report. Also, the organizational
factors that need to be considered in order to maximize the chance of getting the bug fixed.

§ Exercise: Write a bug report based on the observed symptoms.

a. "A problem well-stated is half-solved."
b. The Goal of Bug Reporting
c. The Importance of Reproducibility
d. Isolation and Simplification

i. Bottom-up
ii. Top-down
iii. The “binary defect search” technique

e. Generalization
f. Bug Reporting

i. Important Elements
ii. Working with Developers
iii. Follow-up

 5

10. Static Testing
How to find bugs early without executing the software. An overview of a handful of review and
inspection techniques, and how testers should participate. Also, how to utilize static analysis tools
and services.

a. Reviews and Inspections

i. Desk Check
ii. Walkthrough
iii. Inspection
iv. Combining Review Techniques

b. Static Analysis Tools
i. Complexity Analysis
ii. Defect Detection
iii. Coding Standards Enforcement

11. Metrics
A sampling of metrics that the tester can use to demonstrate progress.

a. Code Coverage Analysis
b. Functional and Requirements Coverage
c. Bug Metrics

i. Find Rate vs. Close Rate
ii. Severity
iii. Bug Reviews

12. Process Improvement
The importance of making continual improvements, and the difficulties of big-bang re-
engineering. How to approach process improvement.

a. Avoiding “Genius Mode” – Don’t Jump to Solutions
b. Identify the Problems
c. Prioritize
d. Identify Solutions
e. Choose a Solution
f. Manage the Improvement

13. Overview of Automated Testing
An introduction to the benefits and pitfalls of automated test execution. Situations where test
automation is most useful. How to avoid creating unmaintainable tests. How data-driven
techniques can allow non-programmers to create automated tests.

§ Exercise: For a variety of sample testing projects, decide where it is appropriate to apply

automation.

a. Why Automate Testing?

i. What Can Automated Testing Achieve?
ii. The Limits of Automated Testing

b. How Test Automation Tasks Are Typically Delegated

 6

c. Critical Testware Maintenance Issues
d. Data-Driven Testing

14. Resources
A recap of tools that can assist testers, plus additional tools and where to find them. A list of
recommended books, periodicals, conferences, organizations, and web sites that testers can go to
for additional information.

a. Tools Recap
b. Books
c. Periodicals
d. Conferences
e. Organizations
f. Web Sites

Course Materials
Each student will receive course notes and information on how to find other resources.

About the Instructor
Danny R. Faught, as proprietor of Tejas Software Consulting, is an independent software quality
consultant and trainer. Danny graduated with honors from the University of North Texas with a
Bachelor’s Degree in Computer Science.

Danny frequently speaks and writes about software quality. He created the comp.software.testing
FAQ, co-founded the swtest-discuss mailing list, and maintains a well-known trio of testing FAQs
at testingfaqs.org. Danny is a member of the American Society for Quality, the Project
Management Institute, and the Forth Worth Chamber of Commerce. Danny also serves on the
Practicality Review Board for STQE magazine.

Course Dates
This course is available as a public-enrollment course from time to time. Check
http://tejasconsulting.com/courses for details on upcoming course dates. It is also available as a
private course at your location. Contact Danny Faught at +1 817 294 3998 or
faught@tejasconsulting.com for details.

	important.pdf
	Local Disk
	articlopedia.gigcities.com

